14 Apr 2015

Evidence of liquid H2O on Mars

11:42 am on 14 April 2015

Nasa's Curiosity rover has found that water can exist as a liquid near the Martian surface. Mars should be too cold to support liquid water at the surface, but salts in the soil lower its freezing point - allowing briny films to form.

Curiosity at the "Mojave" site on Mars.

The Curiosity rover at the "Mojave" site on Mars. Photo: NASA / JPL-Caltech / MSSS

The results lend credence to a theory that dark streaks seen on features such as crater walls could be formed by flowing water. The results are published in the journal Nature.

Scientists think thin films of water form when salts in the soil, called perchlorates, absorb water vapour from the atmosphere. The temperature of these liquid films is about -70 degrees centrigrade, too cold to support any of the microbial life forms that we know about.

Forming in the top 15cm of the Martian soil, the brines would also be exposed to high levels of cosmic radiation - another challenge to life. But it's still possible that organisms could exist somewhere beneath the surface on Mars, where conditions are more favourable.

Evaporation cycle

The researchers drew together different lines of evidence from the suite of instruments carried by the Curiosity rover.

The Rover Environmental Monitoring System (REMS) - essentially the vehicle's weather station - measured the relative humidity and temperature at the rover's landing site of Gale Crater.

Other instruments were used to estimate subsurface water content and the content of water vapour in the atmosphere.

A network of two-tone mineral veins viewed by Curiosity at an area called "Garden City". Mineral veins like these form where fluids move through fractured rocks.

A network of two-tone mineral veins viewed by Curiosity at an area called "Garden City". Mineral veins like these form where fluids move through fractured rocks. Photo: NASA / JPL-Caltech / MSSS

The results show conditions were right for the brines to form during winter nights at the Martian equator, where Curiosity landed. But the liquid evaporates during the Martian day when temperatures rise.

Javier Martin-Torres, a co-investigator on the Curiosity mission and lead scientist on REMS, told the BBC that the detection was indirect but convincing:

What we see are the conditions for the formation of brines on the surface. It's similar to when people were discovering the first exoplanets. They were not seeing the planets, but they were able to see the gravitational effects on the star. These perchlorate salts have a property called deliquescence. They take the water vapour from the atmosphere and absorb it to produce the brines."

He added: "We see a daily water cycle - which is very important. This cycle is maintained by the brine. On Earth we have an exchange between the atmosphere and the ground through rain. But we don't have this on Mars."

While one might think that liquid water would form at warmer temperatures, the formation of brines is the result of an interaction between temperature and atmospheric pressure. It happens that the sweet spot for formation of these liquid films is at colder temperatures.

The Rover Environmental Monitoring Station (REMS) on NASA's Curiosity Mars rover includes temperature and humidity sensors mounted on the rover's mast. One of the REMS booms extends to the left from the mast in this view.

Sensors on the Curiosity rover include temperature and humidity detectors. Photo: NASA / JPL-Caltech / MSSS

The fact that the scientists see evidence for these brines at the Martian equator - where conditions are least favourable - means that they might be more persistent at higher latitudes, in areas where the humidity is higher and temperatures are lower.

In these regions they might even be present all year round.

Dark streaks on slopes seen by orbiting spacecraft have long been thought to be the product of running water seeping from the Martian soil. But this interpretation has been contested.

"It's speculation at this point... but these observations at least support or go in this direction," said Dr Martin-Torres.


Get the RNZ app

for ad-free news and current affairs